262 research outputs found

    High Temperature Specific Heat and Magnetic Susceptibility of Iron-Silicon Alloys

    Get PDF

    Phase locking a clock oscillator to a coherent atomic ensemble

    Full text link
    The sensitivity of an atomic interferometer increases when the phase evolution of its quantum superposition state is measured over a longer interrogation interval. In practice, a limit is set by the measurement process, which returns not the phase, but its projection in terms of population difference on two energetic levels. The phase interval over which the relation can be inverted is thus limited to the interval [π/2,π/2][-\pi/2,\pi/2]; going beyond it introduces an ambiguity in the read out, hence a sensitivity loss. Here, we extend the unambiguous interval to probe the phase evolution of an atomic ensemble using coherence preserving measurements and phase corrections, and demonstrate the phase lock of the clock oscillator to an atomic superposition state. We propose a protocol based on the phase lock to improve atomic clocks under local oscillator noise, and foresee the application to other atomic interferometers such as inertial sensors.Comment: 9 pages, 7 figure

    Feedback control of trapped coherent atomic ensembles

    Full text link
    We demonstrate how to use feedback to control the internal states of trapped coherent ensembles of two-level atoms, and to protect a superposition state against the decoherence induced by a collective noise. Our feedback scheme is based on weak optical measurements with negligible back-action and coherent microwave manipulations. The efficiency of the feedback system is studied for a simple binary noise model and characterized in terms of the trade-off between information retrieval and destructivity from the optical probe. We also demonstrate the correction of more general types of collective noise. This technique can be used for the operation of atomic interferometers beyond the standard Ramsey scheme, opening the way towards improved atomic sensors.Comment: 9 pages, 6 figure

    Heterodyne non-demolition measurements on cold atomic samples: towards the preparation of non-classical states for atom interferometry

    Full text link
    We report on a novel experiment to generate non-classical atomic states via quantum non-demolition (QND) measurements on cold atomic samples prepared in a high finesse ring cavity. The heterodyne technique developed for the QND detection exhibits an optical shot-noise limited behavior for local oscillator optical power of a few hundred \muW, and a detection bandwidth of several GHz. This detection tool is used in single pass to follow non destructively the internal state evolution of an atomic sample when subjected to Rabi oscillations or a spin-echo interferometric sequence.Comment: 23 page

    Nitrogen activation in a Mars-van Krevelen mechanism for ammonia synthesis on Co3Mo3N

    Get PDF
    Co3Mo3N is one of the most active catalysts for ammonia synthesis; however, little is known about the atomistic details of N2 adsorption and activation. Here we examine whether N2 can adsorb and activate at nitrogen surface vacancies. We have identified the most favorable sites for surface nitrogen vacancy formation and have calculated vacancy formation free energies (and concentrations) taking into account vacancy configurational entropy and the entropy of N2 at temperature and pressure conditions relevant to ammonia synthesis (380–550 °C, 100 atm) via a semiempirical approach. We show that 3-fold hollow bound nitrogen-containing (111)-surfaces have surprisingly high concentrations (1.6 × 1016 to 3.7 × 1016 cm–2) of nitrogen vacancies in the temperature range for ammonia synthesis. It is shown that these vacancy sites can adsorb and activate N2 demonstrating the potential of a Mars–van Krevelen type mechanism on Co3Mo3N. The catalytically active surface is one where 3f-hollow-nitrogens are bound to the molybdenum framework with a hexagonal array of embedded Co8 cobalt nanoclusters. We find that the vacancy-formation energy (VFE) combined with the adsorption energy can be used as a descriptor in the screening of materials that activate doubly and triply bonded molecules that are bound end-on at surface vacancies

    Interatomic exchange coupling of BCC iron

    Get PDF
    We performed first-principle calculations on the exchange interaction (EI) between atoms in BCC-Fe strained volumetrically. Our results show that the volume-dependence of the EI deviates considerably from the Bethe-Slater curve. This behavior is discussed in terms of the on-site and/or inter-site direct exchange interactions between electrons.Comment: 22 pages, 7 figure

    Insulin-stimulated phosphorylation of endothelial nitric oxide synthase at serine-615 contributes to nitric oxide synthesis

    Get PDF
    Insulin stimulates endothelial NO (nitric oxide) synthesis via PKB (protein kinase B)/Akt-mediated phosphorylation and activation of eNOS (endothelial NO synthase) at Ser-1177. In previous studies, we have demonstrated that stimulation of eNOS phosphorylation at Ser-1177 may be required, yet is not sufficient for insulin-stimulated NO synthesis. We therefore investigated the role of phosphorylation of eNOS at alternative sites to Ser-1177 as candidate parallel mechanisms contributing to insulin-stimulated NO synthesis. Stimulation of human aortic endothelial cells with insulin rapidly stimulated phosphorylation of both Ser-615 and Ser-1177 on eNOS, whereas phosphorylation of Ser-114, Thr-495 and Ser-633 was unaffected. Insulin-stimulated Ser-615 phosphorylation was abrogated by incubation with the PI3K (phosphoinositide 3-kinase) inhibitor wortmannin, infection with adenoviruses expressing a dominant-negative mutant PKB/Akt or pre-incubation with TNFα (tumour necrosis factor α), but was unaffected by high culture glucose concentrations. Mutation of Ser-615 to alanine reduced insulin-stimulated NO synthesis, whereas mutation of Ser-615 to aspartic acid increased NO production by NOS in which Ser-1177 had been mutated to an aspartic acid residue. We propose that the rapid PKB-mediated stimulation of phosphorylation of Ser-615 contributes to insulin-stimulated NO synthesis

    Facing the urgency of therapies for progressive MS — a Progressive MS Alliance proposal

    Get PDF
    Therapies for infiltrative inflammation in multiple sclerosis (MS) have advanced greatly, but neurodegeneration and compartmentalized inflammation remain virtually untargeted as in other diseases of the nervous system. Consequently, many therapies are available for the relapsing–remitting form of MS, but the progressive forms remain essentially untreated. The objective of the International Progressive MS Alliance is to expedite the development of effective therapies for progressive MS through new initiatives that foster innovative thinking and concrete advancements. Based on these principles, the Alliance is developing a new funding programme that will focus on experimental medicine trials. Here, we discuss the reasons behind the focus on experimental medicine trials, the strengths and weaknesses of these approaches and of the programme, and why we hope to advance therapies while improving the understanding of progression in MS. We are soliciting public and academic feedback, which will help shape the programme and future strategies of the Alliance
    corecore